

Construction Manager at Risk Project Delivery Method

Case Study: Ohio University Shoemaker Center Pedestrian Bridge

13 Aug 2015

County Engineers Association of Ohio

Introduction

Jones-Stuckey

- Founded in 1965
- Offices in Columbus and Akron
- Specialized in structural / civil engineering

- Established in 1966
- Multidiscipline firm
- 1000+ Professionals
- Offices throughout Eastern US

Dwight Stuckey, PE, PS Warren "Bud" Jones, PE

David Jones, PE

- Project Role: Design Project
 Manager / Bridge Aesthetics
- 36 years experience

- Project Delivery Experience:
 - Design Bid Build Delivery Richland Avenue Bridge Rehabilitation, City of Athens
 - Design-Build Owner's Designer, Ohio Bridge Partnership
 - Design-Build Contractor's Designer, East Fork Lake Raw Water Pump Station and Bridge
 - Construction Manager at Risk Criteria Designer and Representative, The Ohio State University Wexner Medical Center Infrastructure Project
 - Multiple Prime Owner Designer & Representative, ODNR South Marina Contracts

Construction Manager at Risk (CMAR)

A project-specific <u>delivery</u> method that is suited for <u>medium</u> to large <u>capital</u> or <u>renovation projects</u>. CMAR provides technical assistance to the designer during the <u>design phase</u>, has a costcapping feature, and allows construction to start before design documents are 100% complete. The CMAR <u>contracts</u> directly with <u>subcontractors</u>, fabricators, and <u>material suppliers</u>.

Construction Manager at Risk (CMAR)

- 1. Integrated Construction Method Delivery System often times referred to as CM/GC
- 2. One of the construction delivery system authorized by the Ohio Legislature in 2009.
- CMAR is used to deliver transportation projects in Connecticut, Maryland, Florida & other states.

Construction Manager at Risk – When to Use

- Projects that require *early contractor involvement* to optimize cost, schedule and quality
- When the owners wants some control of the scope and design during the project development process
- When the owner wants to use constructability, pricing and scheduling to finalize the scope
- Tight budget & schedule and other requirements

- Opportunities for innovation
- Risk reduction & allocation
- Improved cost control
- Improved design quality
- Schedule optimization
- Collaboration

Bay Counts

COMPARISON

General Suitability of Delivery Model

PROJECT TRAITS	D-B-B	CM/GC	D-B		
RISK MANAGEMENT	Very limited	Very effective	Best for low risk shifting		
COLLABORATION	Very limited	Very collaborative	Moderate collaboration contractual limitations		
PRICE CERTAINTY	None, subject to over- runs and change order	Very effective, early price certainty during project development	Very effective, early price certainty during project development		
SCHEDULE ACCELERATION COMPLETION	No ability to overlap design & construction. Can accelerate construction with A+B	Ability to overlap design & construction, ability to optimize schedule not just acceleration	Ability to overlap design & construction, very effective for accelerating project delivery		
CONSTRUCTION QUALITY	Low bid can compromise quality	Very beneficial to building a quality project	Very beneficial to building a quality project		

Bay Counts

COMPARISON

General Suitability of Delivery Model

PROJECT TRAITS	D-B-B	CM/GC	D-B		
INNOVATION	Design innovation only, very limited opportunities for contractor innovation	Very effective for capturing design and construction innovation	Very effective for capturing design and construction innovation		
CONSTRUCT- ABILITY	Very difficult to obtain construction input during design	Optimal delivery method for obtaining construction input before design is complete	Effective delivery method for obtaining construction input before design is complete		
OWNER CONTROL	High level control	Optimal level of owner control	Somewhat limited owner control, more performance based outcome		
COMPETITIVE PRICING	High level	Somewhat limited, competitive markup not final project cost	Good competition, but usually limited to short- listed teams		

Ohio University - Chillicothe

Existing Bridge built 1979

- Recent inspection showed severe deterioration of steel beams
- What went wrong with the existing bridge after 35+ years?
 - Aggressive use of salt
 - Moisture from top and bottom
 - Steel was primed only and hidden
 - Use of stay-in-place forms

Why Use CMAR on Project?

- 1. Extremely Aggressive Schedule Bridge required to be substantially completed April 30, 2015
- 2. Budget was \$890,000 for a covered structure
- 3. Budget was \$450,000 for an uncovered structure
- 4. Owner not sure of what bridge type was wanted.

Schedule

- RFP Submittal
- Technical Proposal Submittal July 23, 2014
- Interviews
- Authorized to Proceed September 23, 2014
- Design (three reviews)
- Temporary Building Access
- Close Bridge
- Structure Removed
- Substructure Work
- Superstructure Work
- Open New Bridge
- Completion of Construction
 Graduation May 2, 2015

- September-December
- Early November 2014

May 30, 2014

August 1, 2014

- Early November 2014
- Mid November 2014
- Late November 2014 to Late December 2014
- Early March 2015
 - Late April 2015
- May 2015

Selection Process

- Ohio requires the Contractor to be selected using a "best value" Quality Based Selection process
- The four person Selection Committee evaluated the Proposer's:
 - > Qualifications (Short List)
 - Technical Proposal
 - Interview
 - Price Proposal

Base Scope of Work Cost

	Dase 3		uver)			Design Build Firm			
ITEM		SSRG		WAI-CG		Shaw & Holter		Geiger Bros.	NOTES
1.a. Preconstruction Fee	\$	3,000.00	\$	1,800.00	\$	5,000.00	\$	2,500.00	
1.b. P/C Design Services Fee	\$	50,000.00	\$	59,750.00	\$	30,000.00	\$	25,000.00	
L.c. P/C Stage Personnel Costs	\$	11,100.00	\$	12,600.00	\$	5,200.00	\$	12,776.00	
L.c. P/C Stage Personnel Hours		160	\$	280		80		148	
L.d. P/C Stage Reimbursables	\$	6,350.00	\$	5,850.00	\$	3,700.00	\$	5,630.00	
Total Preconstruction Compensation	\$	70,450.00	\$	80,000.00	\$	43,900.00	\$	45,906.00	
2.a. Const. Personnel Costs	\$	119,800.00	\$	73,600.00	\$	25,560.00	\$	18,668.00	
2.a. Const. Stage Personnel Hours		1,664		1,200		310		182	
2.b. General Condition Costs	\$	41,400.00	\$	18,875.00	\$	10,500.00	\$	25,180.00	
2.c. DB Contingency %		2%		5%		5%		2%	
2.c. DB Contingency Amount	\$	9,480.00	\$	23,725.00	\$	21,812.00	\$	9,676.00	
2.d. CSDS Fee %		4%		2%		9%		8%	
2.d. CSDS Fee Amount	\$	20,000.00	\$	10,000.00	\$	45,000.00	\$	40,000.00	
2.e. DB Fee %		5%		5%		11.7%		3%	
2.e. DB Fee Amount	\$	26,000.00	\$	25,500.00	\$	63,765.00	\$	16,200.00	
fotal Const. DB Compensation	\$	207,200.00	\$	127,975.00	\$	144,825.00	\$	100,048.00	
Schedule Enhancement, Days (+/-)		-10							
Schedule Enhancement, Cost (+/-)	\$	10,000.00	\$	-	\$	-	\$	-	
DGE %		6%		5%		5%		100%	
Price Component of Best Value	1		244	La Valletta anna 194	34		245		
Selection	Ş	277,650.00	Ş	207,975.00	Ş	188,725.00	Ş	145,954.00	

Best Value Scoring Results

OHIO	Best Va	Shoemaker Bridge Improvements - DB Technical Proposal Summary: Best Value Scoring Results, based on average scores.							
UNIVERSITY	Design Build Firm								
ITEM	Le rea	SSRG		WAI-CG		Shaw & Holter		Geiger Bros.	NOTES
Base Scope of Work:					12				
Total Qualifications Score		68.750		81.750		69.500		72.500	
Total Price Proposal	\$	277,650.00	\$	207,975.00	\$	188,725.00	\$	145,954.00	
Best Value Score		45.200		72.100		70.000		83.500	
Alternate Scope of Work:									
Total Qualifications Score		69.500		81.500		68.000		72.000	
Total Price Proposal	\$	330,880.00	\$	279,145.00	\$	239,131.00	\$	167,239.00	
Best Value Score		42.600		62.100		63.600		83.200	

Normalized Priced Ranking (NPR) = $[1 - ((X-L)/L)] \times 100$

Best Value Score = 60% x TQS + 40% x NPR

 $72.5 \times 60\% = 43.5$ $100.0 \times 40\% = 40.0$ 83.5

New Bridge Design

- How to Improve?
 - High Performance Concrete (ODOT Class QC2)
 - Denser
 - More Durable
 - Epoxy coated steel
 - Sealants on concrete
 - Silane
 - Galvanized Steel
 - 40 year life
 - Limited on tank size
 - Increase life by painting

- Inspection
 - Not over a public road
 - Recommended to be inspected every 2 years

New Bridge Design

• What should be designed?

New Bridge Design

Steel Truss

Steel Truss with Roof

Composite Prestressed Box Beam

Bid Packages

Case Study: Ohio University Shoemaker Center Pedestrian Bridge

GMP's

<u>GMP1</u>

- Early Site Security, Fencing and Erosion & Sediment Control
- Selective Demolition & Removals

<u>GMP2</u>

- Concrete Foundation and Related Civil/Structural Work
- Concrete Superstructure and Deck Placement Work
 <u>GMP3</u>
- Procurement of Bridge Beams & Canopy Framing Steel

<u>GMP4</u>

- Precast Erection
- Steel Framing

<u>GMP5</u>

- Glazing & Railing Panels and Electrical GMP6
- Site Restoration

Summary

Advantages of Delivery

- 1. Specialty Glass
- 2. Project was delivered faster than traditional method.

Construction Manager at Risk