

BUILDING RELATIONSHIPS. DESIGNING SOLUTIONS.

Improving the Accuracy of your GIS -What's Good Enough?

2016 Ohio CCAO/CEAO Conference December 6, 2016

Howard S. Hodder, Jr., MGIS, GISP Matthew D. Warner, PLS <u>www.hrg-inc.com</u>

AGENDA

- 1. Welcome and Introductions
- 2. Surveying defined?
- 3. GIS defined?
- 4. GIS Development Process
 - 1. Project Understanding
 - 2. Database Design
 - 3. Data Collection / Development
 - 4. Application Selection
 - 5. Implementation
 - 6. Growth and Support

- 5. Data Collection / Development (Expanded)
- 6. Applied Technologies
- 7. Metadata
- 8. "AIR"
- 9. Define the "Who"?
- **10. Project Example**
- 11. Future?....Now!
- 12. Questions &

Answers

HERBERT, ROWLAND & GRUBIC, INC.

- Founded in 1962 in Harrisburg, PA
- 200+ employees
- 50+ years of business
- 7 Offices

Professional Engineers | Professional Land Surveyors | Certified GIS Professionals Professional Geologists | Registered Landscape Architects

Harrisburg

369 East Park Drive Harrisburg, PA 17111 717.564.1121 [phone] 717.564.1158 [fax] Andrew Kenworthy, P.E., Vice President, Eastern Region

Shippensburg

20 East Burd Street Shippensburg, PA 17257 717.530.9339 [phone] Jamie Keener, AICP, Office Manager

Pittsburgh

200 West Kensinger Drive, Suite 400 Cranberry Township, PA 16066 724.779.4777 [phone] 724.779.4711 [fax] Dan Santoro, AICP, Office Manager

Youngstown

909-C Sahara Trail Youngstown, OH 44514 330.726.4481 [phone] Tim Schram, PLS, Office Manager

State College

474 Windmere Drive, Suite 100 State College, PA 16801 814.238.7117 [phone] 814.238.7126 [fax] Jason Fralick, P.E., Vice President, Western Region

Lewisburg

776 Bull Run Crossing Suite 200 Lewisburg, PA 17837 570.524.6744 [phone] 570.524.6779 [fax] Erin Threet, P.E., Office Manager

BUILDING RELATIONSHIPS. DESIGNING SOLUTIONS.

Morgantown

829 Fairmont Road Suite 201 Morgantown, WV 26501 304.284.9222 [phone] 304.284.9223 [fax] Sam Petro, P.E., Office Manager

HERBERT, ROWLAND & GRUBIC, INC.

Full service engineering firm – able to fully support the growing and complex needs of our clients – from the initial planning and analysis of financing alternatives through final design, construction administration and operational guidance.

We specialize in providing one-on-one service to each of our clients – responding to your needs, anticipating challenges and delivering precise solutions.

- Water, Wastewater, Storm Water
- Geomatics
 - Geographic Information Systems (GIS)
 - Surveying (Conventional and GNSS/GPS technologies)
- Financial Services
- Transportation
- Land Development
- Electrical Engineering
- Water Resources/Environmental Studies and Design

INTRODUCTION

Howard S. Hodder, Jr., MGIS, GISP

- Director of Geomatics
- Bachelor's degree in Geography from Bloomsburg University
- Master's degree in GIS from Penn State University (MGIS)
- Certified GIS professional (GISP)
- President (PA-MAPPS)
- Board Member PA State Geospatial Coordinating Board
- Leadership Harrisburg Graduate (2011)
- 2016 Central Pennsylvania Forty under 40

INTRODUCTION

Matthew D. Warner, PLS

- Geomatics Regional Service Group Manager
- Associates degree in Land Surveying Technology & Bachelor's degree in Surveying from Penn State University
- Professional Land Surveyor (PLS) PA, NY
- Board Member PA State Geospatial Coordinating Board
- 12+ years of experience in the land surveying profession

SURVEYING

WIKIPEDIA The Free Encyclopedia

Surveying

From Wikipedia, the free encyclopedia Jump to: <u>navigation</u>, <u>search</u>

This article is about measuring positions on Earth. For other uses, see <u>Survey</u>.

Surveying or **land surveying** is the technique, profession, and science of accurately determining the terrestrial or threedimensional position of points and the distances and angles between them, commonly practiced by **surveyors**, and members of various engineering professions. These points are usually on the surface of the Earth, and they are often used to establish land <u>maps</u> and boundaries for <u>ownership</u>, locations like building corners or the surface location of subsurface features, or other purposes required by government or civil law, such as property sales.

Surveyors use elements of <u>mathematics</u> (<u>geometry</u> and <u>trigonometry</u>), <u>physics</u>, <u>engineering</u> and the <u>law</u>. Surveying equipment includes <u>total stations</u>, robotic total stations, GPS receivers, prisms, <u>3D scanners</u>, radios, handheld tablets, digital levels, and <u>surveying software</u>.

WIKIPEDIA The Free Encyclopedia

Geographic information system

From Wikipedia, the free encyclopedia (Redirected from <u>GIS</u>) Jump to: <u>navigation</u>, <u>search</u>

"GIS" redirects here. For other uses, see <u>GIS (disambiguation)</u>. A **geographic information system** (**GIS**) is a computer system designed to capture, store, manipulate, analyze, manage, and present all types of spatial or geographical data.

In a general sense, the term describes any <u>information system</u> that integrates, stores, edits, analyzes, shares, and displays <u>geographic</u> information. <u>GIS applications</u> are tools that allow users to create interactive queries (user-created searches), analyze spatial information, edit data in maps, and present the results of all these operations.^{[2][3]} Geographic information science is the science underlying geographic concepts, applications, and systems.^[4]

GIS is a broad term that can refer to a number of different technologies, processes, and methods. It is attached to many operations and has many applications related to engineering, planning, management, transport/logistics, insurance, telecommunications, and business.^[3]

WHAT IS GIS?

- GIS is an abbreviation for Geographic Information System
 - Hardware
 - Software
 - Data
 - Methods
 - People

GIS LAYERS – 2D AND 3D

HIRG Herbert, Rowland & Grubic, Inc. Engineering & Related Services

SURVEYOR'S DEFINITION OF "GIS"

Get It Surveyed

PROJECT PROCESS OVERVIEW

- Project Kick-Off
- Stakeholder Discussions
- Data Review
- Hardware / Software Review

Database Design

- •Table Structures
- Data Relationship Development
- •Schematic Development
- "Final" Database Structure

Application Selection / Development

DesktopWeb-basedMobile

Data Conversion / Migration •Data Migration •QA / QC

Data Collection

- GPS Collection
- •Attribute Input
- Field Data Collection
- Paper Map and Existing Databases
- •QA / QC

Installation / Implementation

Database DeliveryApplication(s) InstallationTraining

Continued System Support / Growth

Troubleshooting
Q & A
Future Database Updates and Additions
Additional Project(s)
Data Layer Development
Custom Application(s)
External Database Connections
Etc.

PROJECT UNDERSTANDING

- What is the want vs need vs required?
 - Short-Term vs Long-term Goals
 - Education of Client Technologies, Software, Uses, Who?, Etc.
- Involved Stakeholders?
 - Managers and Workers
 - Group and Individual Discussions
- Timeframe?
- Budget?
- Existing Information?
 - Data Sources
 - Existing Data Review

GIS DEVELOPMENT PROCESS OVERVIEW

GIS DATABASE DESIGN

- Feature Structures
- Table Structures
- Domains
- Data Relationship Development
- Schematic Development
- "Final" Database Structure
- Responsibility Definitions

GIS DEVELOPMENT PROCESS OVERVIEW

DATA COLLECTION / DEVELOPMENT – FACTORS

Questions to Consider:

(Define proper data collection / development techniques according to specific client needs and project requirements.)

- Budget / Schedule?
- How accurate must the data be?
- What is the immediate need?
- What will be the future use / analysis of the data?
- Who will conduct field data collection / process the data?
- Is Elevation Important?
- Etc., etc., etc....

DATA COLLECTION / CONVERSION / MIGRATION

Data Collection

- Heads-Up Digitizing
- GPS (Carrier vs Code)
- Conventional Survey
- Terrestrial/Mobile/Airborne LiDAR
- Attribute Input
 - Field Data Collection
 - Paper Map and Existing Databases
 - QA / QC

Data Conversion / Migration

- Data Migration
 - Field Data
 - Existing Digital Data Layers/Databases
 - Hard Copy Information Sources
- QA / QC

DATA COLLECTION – IT DEPENDS.....

The client must be the final judge as to what type of data collection best suites their circumstances and who will perform the collection, but, in my opinion, it is the consultants' duty to educate the client / prospective client on the different options available so they are able to make that informed decision.

SURVEYOR'S DEFINITION OF "GPS"

Get It Professionally Surveyed

DATA TREND

1980's and 1990's

- Large Scale
- Planning Grade
- Spatial Analysis
- Expensive Hardware, Software, Data
- 2D

1990's and 2000's

- Move Towards Smaller Scale
- More Detailed Spatial Analysis
- Technology Advancements
- 2D moving toward 3D

<u>Mid 2000's to...</u>

- Increased Accuracy
- Modeling and Analysis
- Further Technology Advancements
 - Hardware
 - Software
- 2D, 3D, 4D and 5D

TERRESTRIAL LIDAR/LASER SCANNING

- Captures millions of closely spaced measurements in a matter of minutes.
- Increased Speed & Accuracy
- Non-intrusive means of rapidly collecting detailed and accurate "As-Is" data.
- Data can be viewed, navigated and analyzed much like a 3D model in traditional CAD systems.

Scan Once: Reuse Often

- Building Information Models (BIM)
- Space Utilization
- As-Built Documentation
- Geographic Information Systems (GIS)
- Engineering Analysis
- Conflict/Interference Identification
- Change Detection
- Security Planning/Threat Analysis
- Historic Preservation Documentation

Accuracy of single measurement @ 200 Meter Range Position – 6 mm (1/4") Distance – 4 mm (1/6") Angle – 60 microradians

TERRESTRIAL LIDAR/LASER SCANNING

Types of Scanners

Phase-Based Close Range (80 meters) Speed: 3 to 9 min per scan

Accuracy 1-2mm

Ideal for Interiors and Confined Spaces

Time-of-Flight Long Range (200 meters) Speed: 15 to 30 min per scan

Accuracy 3-6mm

Ideal for Tall Structures, Corridors and Small Campus

Mobile Longest Range *(up to 750 meters)* Multiple Scanners, High Speeds Accuracy +/- 30mm

> Ideal for Large Campus or Corridors

FEATURE EXTRACTION

- Curb cuts
- Edge of pavement
- Sidewalks
- Ramps
- Handrails
- Building corners
- Fences
- Retaining walls
- Fire hydrants
- Manholes
- Light / Power Poles
- Signs / Billboards
- Guardrail
- Trees
- Pavement DTM features (EP, C&G, Travel Lane Lines, Crowns)
- Transmission Lines

…Any physical feature you can detect from data set

Engineering & Related Services

AIRBORNE/MOBILE/TERRESTRIAL DATA FUSION

APPLIED TECHNOLOGIES

Advanced Data Acquisition

- Terrestrial LiDAR/Laser Scanning
- Global Positioning Systems
- Subsurface Feature Identification
- Mobile-GIS/CAD
- Feature Recognition & Extraction
- Thermal Imagery
- Building System Sensors

Integration Technologies

- Geographic Information Systems
- Building Information Models
- Real Property System
- Enterprise Resource Planning
- Computerized Maintenance Management Systems
- Computerized Facility Management Systems
- Web-Based Management Dashboards
- Visualization/4D Simulation

Laser Scanning, GPS and Mobile-GIS tools ensure accuracy and standardization of geospatial asset inventories

Integration of data and existing systems enables sound decision making

METADATA

- "Data About Data"
- Assists end users with more precise and defined information regarding the data development and planned use(s)
- Important for managing data quality and integrity during integration, migration and maintenance
- Provides information such as defined extents, projection, scale, attribute field definitions, precision, accuracy, etc.

Field name	Data type	Allerer	Default volue	Done		Prec-	icate 1	math		
OBJECTID	Object ID			1						
SHAPE	O-cometry	Yes						1000		
ASSETIO	Sming	Np						25		
APSOURCE	Sping	No		MAPSO	RCE			10		
× .	Double	Yes				0	0			
. Y .	Double	Yes				0				
ELEVATION	Double	(Yes				0	0		1	
YEAR	Long integer	Yes			Code	al cond				
OWNER	String	Yes		CWI	Code	u vai	ue oc	omair	1	
UBSIZE	Doutie	Yes			MAP	SOUR	RCF			
MHTYPE	String	Yws		SanitarySee						
MATERIAL	String	Ves		Manhole	Des	cripti	on 7	The n	nethod used to map the feature	
TRAFFIC	String	Ves		VES	Fie	eldtv	pe 🕄	Strino		
LIDTYPE	String	Yes		MHUR	Col			1.0	thursday.	
COMBINED	String	Yes		YEB	opi	it poi	Cy I	Jerau	it value	
DEPTH	Doutie	Yes			Merg	e pol	icy I	Jefau	it value	
INVERT	Double	Yes		-			_			
NUMPIPES	Short integer	Ves					С	ode	Descri	ption
NOTE	String	Yes		1.1			RT	GPS	S RTK (SQ2
NUMBTEPS	cripit stager	Yes		111						~ ~
							COD)EGP	S Code (GPS
							SU	RVE	Convention	al Survey
							ASE	BUILT	r As-B	uilt
								Dell	D Handa un	distiliant of
							TICA	UCU	F Heads up	alguzed

anitary Sewer Manhole										
OB	J SHAP	Facilit	x	Y	Rim Elevation	Collection Method	Т			
719	Point	1874	2242690.208	322317.414	378.904	Real Time Kinematic GPS	Т			
720	Point	1875	2242758.104	322438.841	380.682	Real Time Kinematic GPS				
72	Point	1877	2242806.019	322613.112	371.082	Real Time Kinematic GPS				
72	Point	1879	2242800.672	322583.455	371.821	Real Time Kinematic GPS	Τ			
72	Point	1880	2242887.46	322563	369.133	Real Time Kinematic GPS				
724	Point	1881	2242936.63	322551.842	366.814	Code GPS	1			
72	Point	1883	2242552.805	322641.698	376.384	Real Time Kinematic GPS				
726	Point	1884	2242448.948	322708.172	380.916	Real Time Kinematic GPS				
72	Point	1885	2242360.198	322855.474	383.523	Real Time Kinematic GPS				
728	Point	1886	2242475.868	322907.11	379.439	Real Time Kinematic GPS	ר			
729	Point	1889	2242756.654	322853.633	372.853	<null></null>	1			
730	Point	1891	2242494.208	323206.277	393.149	Conventional Survey	t			
73	Point	1893	2242293.292	323596.282	402.018	Heads Up Digitized	t			
						Planset				

"AIR" – ASSET INFORMATION REPOSITORY

Asset Information Repository (AIR):

- NOT a custom developed or single commercially available software
- A practice of capturing and preserving data throughout the life cycle
- An application of industry embraced software, best-data-practices and standards
- An integration of varied data sources into a common geospatial environment
- An approach to presenting information visually and virtually to support the facility & asset specific operational and strategic decision making activities

PLANNING AND CONCEPT DESIGN

Terrestrial LiDAR & Mass Modeling enable visualization of Master Plans and Concept Designs

– When is a licensed surveyor "needed" for data collection?

(Licensed Surveyor, or supervised by licensed surveyor)

– Who should put the data together in the office?

(GISP – GIS Certification Institute, or supervised by GISP)

- GPS\GNSS data collection should be performed by licensed surveyor(?)
 - <u>SURVEYING</u> the practice of measuring angles and distances on the ground so that they can be <u>accurately</u> plotted on a map [http://wordnet.princeton.edu/perl/webwn?s=surveying]
 - Importance of data quality and assurance (Surveyor's Seal)
 - Precise Locations Important, Elevations Important
 - "True Understanding" of data collection
 - Projection, Datum, Error Calculations
 - Not just know how to use hardware
 - Required by Local / State / Federal Mandates

GIS Certification

- Still very controversial – Mixed Opinions

Is there a GIS "profession"?- Multiple uses for GIS

[Making the case for GIS Professional Certification, GeoSpatial Matters, Wayne, Lynda, Huxhold, William, and Grams, Scott. <u>www.geoplace.com/hottopics/giscertification/ProCertification.asp</u>]

[A Critical Perspective on GIS Professional Certification, GeoSpatial Matters, Cordova, Henry. <u>www.geoplace.com/hottopics/giscertification/AntiCertification.asp</u>]

GIS Art or Science? – Is it certifiable?

[Stay on Your Own Side, Where is the line between surveying and mapping?. Al Butler, AICP, 2000]

- Usefulness of Certification
- Professionalism / Experience
- QA / QC
- Standards / Values
- Code of Ethics

• Importance of Survey License and GIS Certification

- I believe many are unaware of importance of the need for a licensed individual to complete or QA/QC field GPS feature collection and final GIS data development and analysis.
- Mixed results and opinions for both GIS Certification and GPS Survey by Licensed Surveyor.

PROJECT EXAMPLE – CAPITAL REGION WATER

CRW SERVICE AREAS

- >200 Miles of Water Distribution Pipes
- >20,000 Water Service Connections
- ~4,000 Storm Water Inlets
- ~134 Miles of Sanitary Sewer Pipes
- ~20% Separate Storm Water and ~80% Combined Sewer

BASEMAP DEVELOPMENT

- 1"=50' Scale
- Digital Color
 Orthophotography
 - .25' and .5' pixel resolution
- Impervious Surfaces
- 2' Contours

SUE – SUBSURFACE UTILITY ENGINEERING

Collection and Depiction of Existing Subsurface Utility Data

This document uses both Systems international (Si) units and customery units.

ASCE

<u>CI</u>

CI/ASCE 38-02

- The ASCE defined the practice of Subsurface Utility Engineering (SUE) as a branch of engineering practice that involves managing certain risks associated with utility mapping at appropriate quality levels, utility coordination, utility relocation design and coordination, utility condition assessment, communication of utility data to concerned parties, utility relocation cost estimates, implementation of utility accommodation policies, and utility design.
- Quality Levels of information ranging from records only to utility exposure and precise measurements

D > C > B

SUE QUALITY LEVELS B & A

- Electromagnetic Locating (Level B)
- Ground Penetrating Radar (Level B)
- Vacuum Excavating (Level A)

DESIGNATION AND TEST HOLES

PROJECT DATA COLLECTION METHODS

- Conventional Survey and GNSS/GPS
- >140,000 Survey
 Locations Collected
- ESRI Collector App
 - Water Meter Battery
 Replacement
 - USACE Storm Water Investigations

SEWER INSPECTION – MULTI SENSOR INSPECTION

Observation Report

PCI-27A - PCI-28

INFRASTRUCTURE INVESTIGATION TECHNIQUES

- Sewer System Technology
 - Manholes
 - Digital Optical Manhole Scanner

MANHOLE INSPECTION – MH SCANNER

SEWER INSPECTION EQUIPMENT - CCTV

© 2013 Herbert, Rowland & Grubic, Inc.

SEWER INSPECTION EQUIPMENT - CCTV

GYROSCOPIC MAPPING PROBE

FUTURE?.....NOW!

- Web-Based GIS
 - Share information across the internet
 - Live field updates to existing data
 - Greater "Transparency"
- Mobile view and/or update remotely
 - Tablet devices
 - Mobile phones
- Centralized GIS databanks / Servers
 - Reduce data redundancy
 - Provide access to more people
 - Enhanced Analysis
 - 3D, 4D, 5D?
 - Above and below ground
 - Analysis / Modeling
 - Temporal Information

FUTURE?.....NOW!

• UAV / UAS – Unmanned Aerial Vehicles

• Internal Building Routing

• Your Imagination and Budget.....

DISCUSSIONS – THANK YOU FOR YOUR TIME

Herbert, Rowland and Grubic, Inc

369 East Park Drive Harrisburg, PA 17111 (717)564-1121

Howard S. Hodder, Jr. MGIS, GISP

hhodder@hrg-inc.com

Matthew D. Warner, PLS <u>mwarner@hrg-inc.com</u>

