
Michael Baker

We Make a Difference

Methodologies to Determine Storm Water Fees Using GIS 2017 Ohio Storm Water Management & Drainage Conference

Today's Presentation

<u>Speaker</u>

- Jeremy Jurick
- GIT Technical Manager
- Michael Baker
 International

<u>Goal</u>

- Provide an overview on how to use GIS to determine...
 - *"How much impervious area exists in my jurisdiction?"*

Storm Water Fees

- Becoming popular nationwide
- Used as a strategy to recoup costs of infrastructure instead of...
 - Raising taxes
 - Increasing water/sewer rates
- Many factors are behind the actual fee:
 - Is new equipment necessary?
 - Will new full or part time employees be needed to handle customer service?
 - How much runoff occurs?

Surface Runoff + GIS

 Geographic Information Systems (GIS) are used to evaluate if a surface is:

- Impervious
- Pervious

GIS Methodologies to Find Impervious Surfaces

✓ Color Infrared Analysis

✓ Use Planimetric Layers

GIS Methodologies to Find Impervious Surfaces

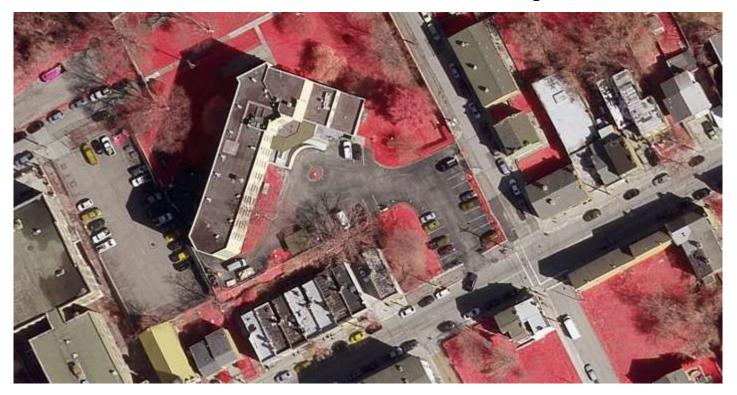
Color Infrared Analysis

- Unsupervised
 - "OK Computer, here is the data now do the best you can"
- Supervised
 - "OK Computer, here is how I want you to classify this information"

<u>Planimetric Data</u>

- These are layers for...
 - Buildings
 - Parking Lots
 - Road Edge of Pavement
 - Driveways
 - Sidewalks
 - Decks/Patios
 - Recreation Surfaces

- What is Color Infrared Imagery?
 - Color-infrared (CIR) imagery uses a portion of the electromagnetic spectrum known as near infrared that ranges from 0.70 μm to 1.0 μm (0.7 to 1.0 micrometers or millionths of a meter), just beyond the wavelengths for the color red.
 - Typical imagery has three bands
 - Band 1: Red
 - Band 2: Green
 - Band 3: Blue
 - With color infrared imagery, a fourth band is captured
 - Band 4: Near Infrared

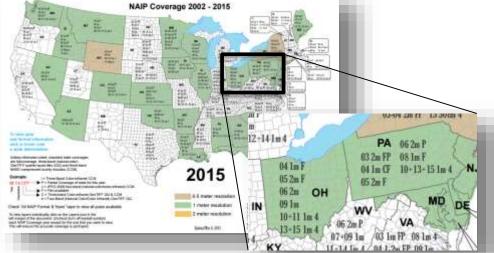


RGB

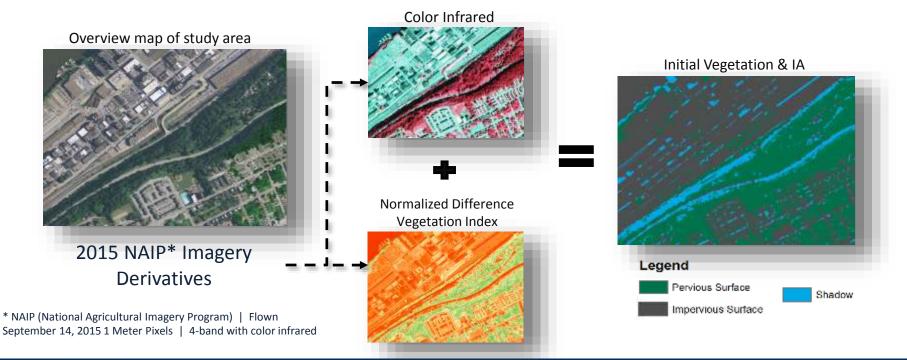
CIR

Feasibility Study

- Can Use NAIP Imagery
 - National Agriculture Imagery Program
 - Free Data!
 - Unsupervised
 Classification

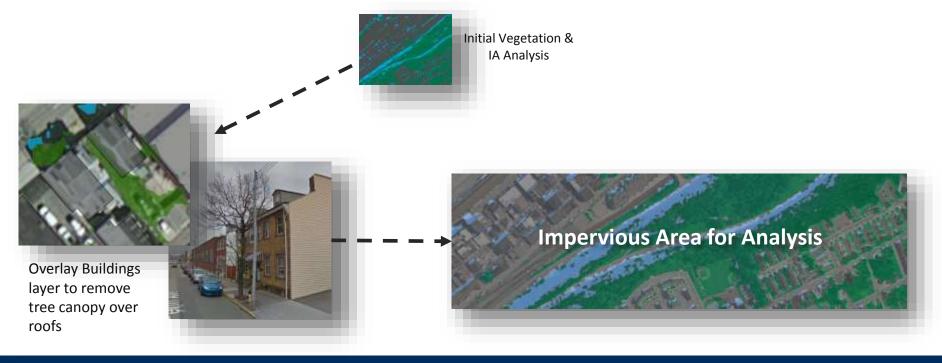

Implementation Phase

- Use Better Imagery
 - Pay to fly or...
 - If lucky, County or State has flown already
 - Supervised
 Classification

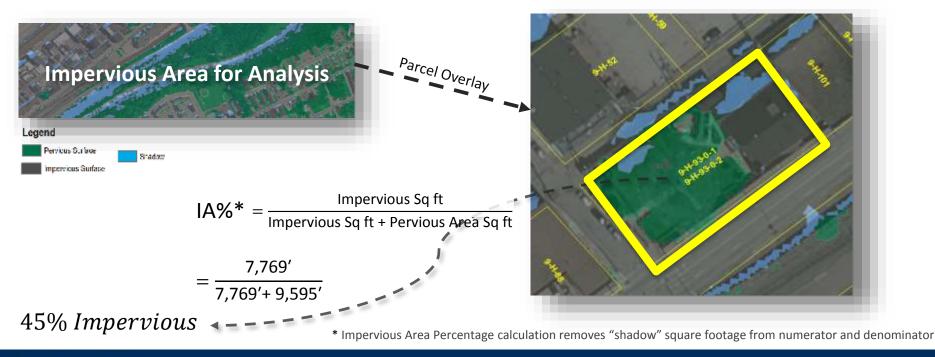


Case Study

- …Large City in Pennsylvania
- Feasibility study
- NAIP Imagery
 - Positives
 - Free!
 - Fast Processing time
 - Downsides
 - Tree cover (flown in Summer to analyze crops)
 - 1 meter pixels (too large -- a lot can be going on in 1 square meter)
 - 10% cloud cover



Impervious Surface | Unsupervised | Suggested Mapping Approach for ERU Determination



We Make a Difference


Impervious Surface | Unsupervised | Suggested Mapping Approach for ERU Determination

Impervious Surface | Unsupervised | Suggested Mapping Approach for ERU Determination

Impervious Surface | Unsupervised | Suggested Mapping Approach for ERU Determination

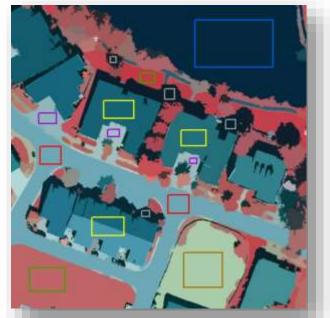
Impervious Surface | Unsupervised | Suggested Mapping Approach for ERU Determination

Property Description	Number of Parcels	Impervious SqFt	Pervious SqFt	Percent Impervious
CHURCHES, PUBLIC WORSHIP	18	130,368	56,215	69.87%
COMMERCIAL GARAGE	4	21,609	1,591	93.14%
COMMUNITY SHOPPING CENTER	1	68,099	509	99.26%
OFFICE-ELEVATOR -3 + STORIES	1	13,885	4	99.97%
OFFICE - 1-2 STORIES	6	62,553	8,048	88.60%
OFFICE/APARTMENTS OVER	2	7,568	63	99.17%
OFFICE/WAREHOUSE	22	744,614	97,430	88.43%
OTHER COMMERCIAL	2	5,768	19,921	22.45%
OTHER FOOD SERVICE	2	6,248	0	100.00%

We Make a Difference

Impervious Surface | Unsupervised | Suggested Mapping Approach for ERU Determination

Result of Analysis						
Property Description	Number of Parcels	Impervious SqFt	Pervious SqFt	Percent Impervious		
CHURCHES, PUBLIC WORSHIP	18	130,368	56,215	69.87%		
COMMERCIAL GARAGE	4	21,609	1,591	93.14%		
COMMUNITY SHOPPING CENTER	1	68,099	509	99.26%		
OFFICE-ELEVATOR -3 + STORIES	1	13,885	4	99.97%		
OFFICE - 1-2 STORIES	6	62,553	8,048	88.60%		
OFFICE/APARTMENTS OVER	2	7,568	63	99.17%		
OFFICE/WAREHOUSE	22	744,614	97,430	88.43%		
OTHER COMMERCIAL	2	5,768	19,921	22.45%		
OTHER FOOD SERVICE	2	6,248	C	100.00%		


Pocult of Applycic

- Going from feasibility to implementation
- Recommend better IA data for public release

Color Infrared Analysis for Implementation

Impervious Surface | <u>Supervised</u> | Suggested Mapping Approach for ERU Determination

- The difference between supervised and unsupervised is that I tell the computer how to classify the imagery
- No surprises (...kind of)
- Train the classifier
- More time to complete

Color Infrared Analysis for Implementation

Impervious Surface | Supervised | Suggested Mapping Approach for ERU Determination

Unsupervised - 1 meter pixels

Supervised - 6 inch pixels

Methodologies

Color Infrared Analysis Supervised Unsupervised

Use Planimetric Layers

<u>Planimetric Data</u>

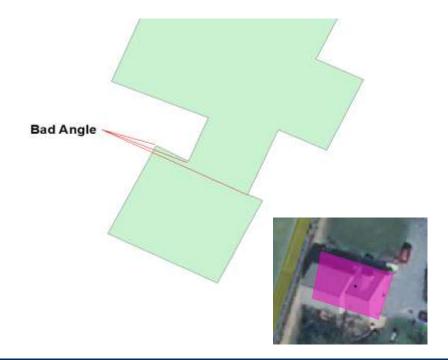
- GIS layers
 - Buildings
 - Parking Lots
 - Road Edge of Pavement
 - Driveways
 - Sidewalks
 - Decks/Patios
 - Recreation Surfaces

- To use this methodology, data must be accurate and current
- Typically, some data does exist yet it will need updated and quality checked
- Warning! Updating existing data is sometimes more difficult than recreating it!

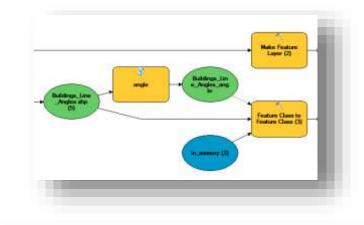
- Data is typically collected two ways:
 - Photogrammetric 3D capture
 - Heads up digitization

- Case Study
 - City of Lancaster, Pennsylvania

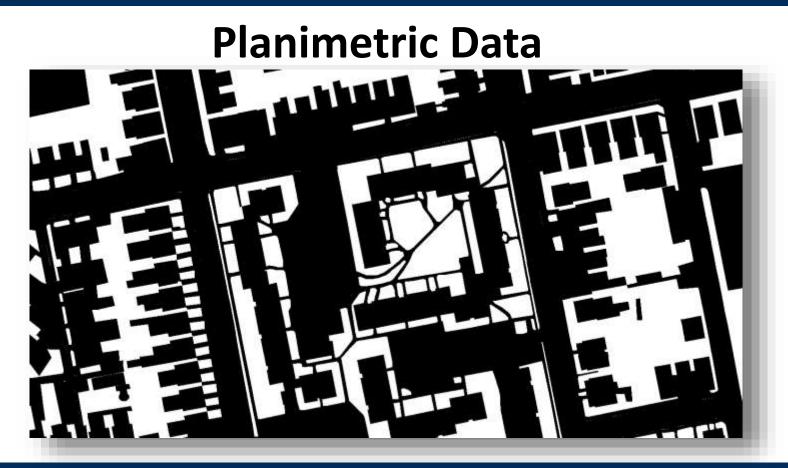
- Data collection challenges
 - Buildings
 - Building Lean
 - 90° Angles
 - Size to collect
 - Pavement
 - Is it impervious or not?
 - Size/Length to collect

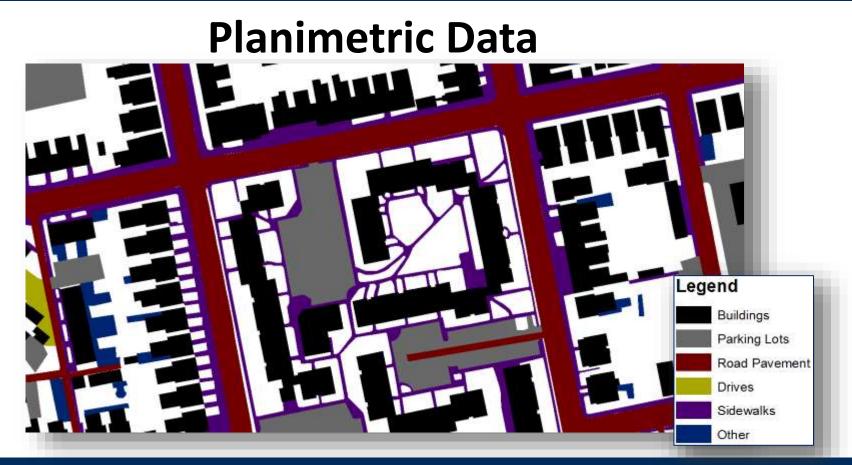

- Building lean
 - Can appear incorrect, but truly is accurate

- Building angles
 - Unless you hired this carpenter, you're house is likely built with 90° Angles

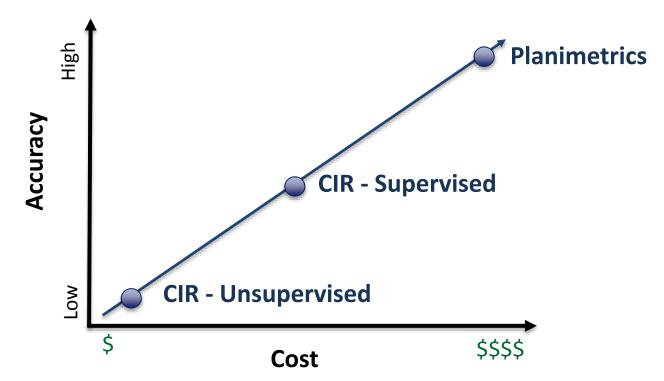


Pavement – Is it Impervious?





- Solution to issues create a custom, automated QC tool in GIS
- Built with Model Builder and Python to catch the following:
 - Buildings Less Than 100 Square Feet
 - Buildings accidentally deleted
 - Building attribute should be 'Modified'
 - Building attribute should be 'Updated'
 - Buildings intersecting
 - Building vertices with no Z value
 - Buildings with non 90° corners



import arcpy, math, datetime, numpy from arcpy import env	🥐 python
<pre>print "starting" start = datetime.datetime.now() # for calculating</pre>	time of process
lineFC = arcpy.GetParameterAsText(0)	torme of process
LineFCOutput = arcpy.GetParameterAsText(1)	
<pre>#lineFC = r*Ci\Temp\Buildings_Line_Angles.abg* #</pre>	input fg - with pre-added fields
"angleChng" and "AvCurv"!	
dac = arcpy.Describe(linsFC)	
shapeFieldName = dsc.ShapeFieldName	
updateRows = arcpy.UpdateCursor(lineFC)	

Thank you!

Jeremy Jurick GIT Technical Manager Michael Baker International

jjurick@mbakerintl.com 724.495.4281

