
Protecting Your Infrastructure from Stream Erosion

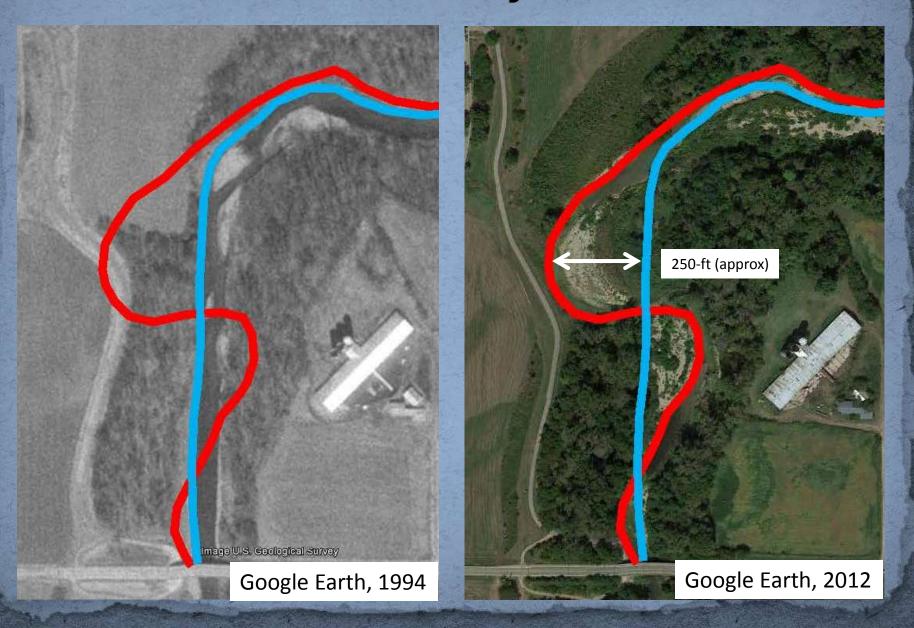
March 8, 2017

SUSTAINABLE SOLUTIONS FOR YOUR WATER RESOURCES

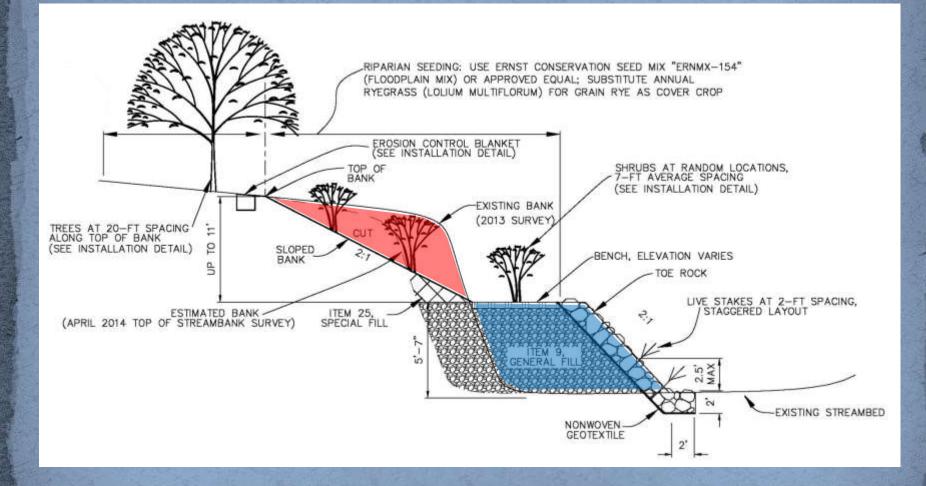
Presentation Outline

- Infrastructure / stream conflicts
- Application of natural channel design techniques
- Case studies
 - Dry Fork Creek Hamilton County, Ohio
 - o Glady Run Greene County, Ohio
 - Little Miami River Xenia, Ohio
 - Little Twin Creek Montgomery County, Ohio
- Project success factors
- Closing thoughts

Infrastructure / Stream Conflicts


- Streams are dynamic systems that are subject to horizontal and vertical adjustments
- The rate of adjustment may be accelerated in disturbed streams (floodplain filling, hydrologic changes, channel straightening, etc.)
- At-risk infrastructure includes utility lines, transportation assets, and recreational assets (bike paths, shelters, etc.)

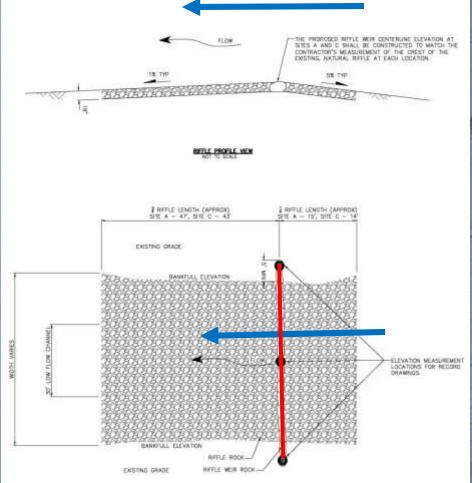
Streams Are Dynamic!!!

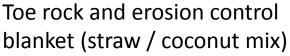

Natural Channel Design Techniques

- Reconfigured channel cross-sections (reduced bank slopes, bankfull benches)
- Grade control structures (boulders or logs)
- Permanent and temporary stabilization (toe rock, vegetation, erosion control blanket)

Reconfigured Cross-Section

Grade Control Structure, J-Hook

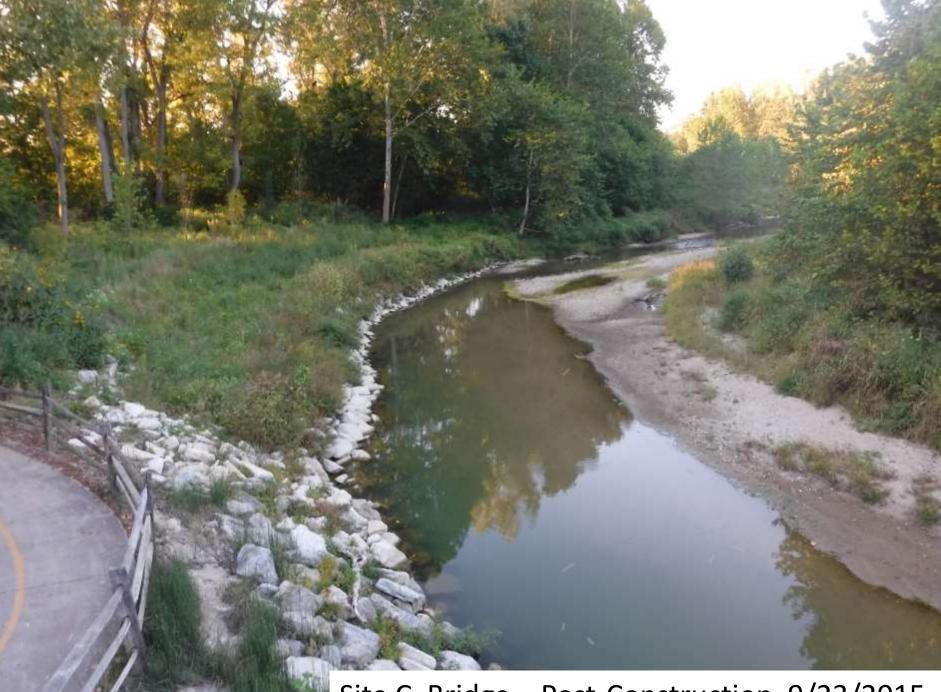



Grade Control Structure, Constructed Riffle

Permanent and Temporary Stabilization

Case Study – Dry Fork Creek

- Project Owner: Great Parks of Hamilton County
- Project Goal: Restore and stabilize rapidly eroding streambanks causing property loss and risk to adjacent park infrastructure
- Alluvial soils, watershed area of 77 mi²
- Principal Design Elements:
 - 3,300 cys of excavation
 - 1,600 cubic yards of toe rock
 - J-Hook structures (5 total)
 - Constructed Riffles
 - Native plantings (seeding, shrubs, trees, live stakes)
- Total restoration length: approximately 1,400-ft
- Construction Cost: \$597,800
- Construction Schedule: July to December, 2014
- Funded through Clean Ohio Conservation Program



Site C, Bridge - Construction, 9/5/2014

Alante

Site C, Bridge – Post-Construction, 9/23/2015

Site C, Bridge – Post-Construction, 6/12/2016

Site C, Bend – Restoration, 11/30/2014

7-11

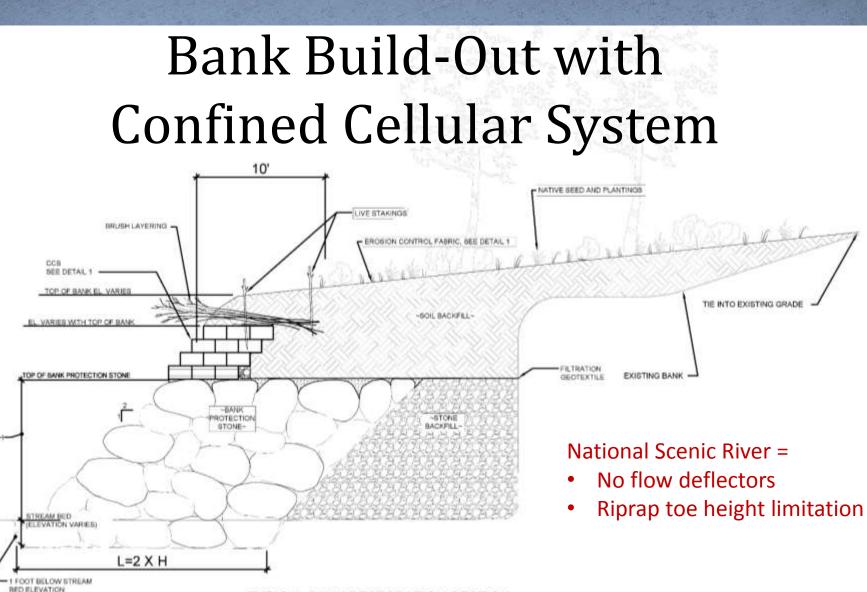
17 7 12

Case Study – Glady Run

- Project Owner: Greene County Parks and Trails
- Project Goal: Stabilize and restore rapidly eroding stream banks and protect a heavily used bike path
- Cohesive soils, historically straightened channel, watershed area of 3.5 mi²
- Principal Design Elements:
 - 600 cubic yards of toe rock
 - Native plantings (seed, shrubs, trees, live stakes)
 - Protection of adjacent bike path and timber fence
- Total Project Length: Approximately 2,900-ft
- Construction Cost: \$139,933
- Construction Schedule: February to June, 2015
- Funded through Ohio EPA's 319 Program

Area Alt-3 – Construction, 3/19/2015

Area F – restoration, 4/28/2015


Case Study – Little Miami River

- Project Owner: City of Xenia, Ohio
- Project Goal: Stabilize and restore severely eroding stream banks at the headwall of the outfall for the Ford Road Wastewater Treatment Plant
- Watershed area of 217 mi²
- Principal Design Elements:
 - Regrading and vegetating vertical stream banks
 - Stream bank stabilization (rock, tree revetments, CCS, live stakes, branch layers, riparian tree plantings)
 - Invasive species control (honeysuckle, reed canary grass)
- Total Project Length: Approximately 1,560-ft
- Construction Cost: \$778,500
- Construction Schedule: December 2010 to June 2012
- Funded through Ohio EPA's 319 Program and ARRA

Little Miami River National Scenic River

Two years of excessive streambank erosion (35 feet) put Xenia's Ford Road WWTP outfall in jeopardy

TYPICAL BANK RESTORATION SECTION

Post-construction June 2011

Post-construction, July 2011

Post-construction, 2012 After flood event

Case Study – Montgomery County Engineer's Office

- Project Owner: Montgomery County, Ohio
- Project Goal: Protection for nearby infrastructure and roadways along a series of high-priority sites experiencing severe stream bank erosion
- Sites
 - Little Twin Creek Manning Road*
 - Spring Run Mile Road
 - Tributary of Twin Creek Oxford Road
 - Great Miami River Upper River Road

Little Twin Creek Manning Road

- Project Goal: Relocate the stream meander to protect the adjacent roadway from the severely eroding streambank
- Watershed area of 16.2 mi²
- Principal Design Elements:
 - Stream relocation
 - J-hooks
 - Constructed pools and riffles
 - Slope re-grading
- Total Project Length: Approximately 1,000-ft
- Estimated Cost: \$1.6M
- Proposed application to Clean Ohio for funding

Legend

Existing Little Twin Creek Alignment

Proposed Little Twin Creek Alignment

— J-hooks

Pools

- Riffles
- Work Limits
- Typical Cross Section Location
- ••••• Proposed Grading Limits
- Proposed 2 FT Contours
- ----- Existing 2 FT Contours

Proposed Concept, 2017

Project Success Factors

- Conservative designs (rock / boulder sizing, J-hook geometry, etc.)
- Clearly defined quantities for contractors (J-hook structure rock, toe rock, etc.)
- Construction scheduling to account for optimal streamflow conditions
- Contract provisions that addressed the protection and repair of adjacent infrastructure
- Qualified contractor and experienced construction oversight team

Dry Fork Creek, Site A - 1/3/2015 Flood

Glady Run, bike path overlay

Closing Thoughts

- Natural channel design-based stream restoration can be an effective means of infrastructure protection
- Natural channel design approaches are encouraged by permitting agencies (Corps, Ohio EPA, etc.)
- Natural channel design projects can be attractive candidates for grant funding

Questions?

Kristen Risch Principal/Owner

(740) 936-5368 kdrisch@coldwaterconsultants.com

SUSTAINABLE SOLUTIONS FOR YOUR WATER RESOURCES